赵文彬, 管清向, 柳俊仓, 辛嵩, 周慧忠. 深部矿井地温梯度规律分析[J]. 煤矿安全, 2015, 46(8): 188-191.
    引用本文: 赵文彬, 管清向, 柳俊仓, 辛嵩, 周慧忠. 深部矿井地温梯度规律分析[J]. 煤矿安全, 2015, 46(8): 188-191.
    ZHAO Wenbin, GUAN Qingxiang, LIU Juncang, XIN Song, ZHOU Huizhong. Analysis of Deep Mine Geothermal Gradient[J]. Safety in Coal Mines, 2015, 46(8): 188-191.
    Citation: ZHAO Wenbin, GUAN Qingxiang, LIU Juncang, XIN Song, ZHOU Huizhong. Analysis of Deep Mine Geothermal Gradient[J]. Safety in Coal Mines, 2015, 46(8): 188-191.

    深部矿井地温梯度规律分析

    Analysis of Deep Mine Geothermal Gradient

    • 摘要: 为掌握深部矿井地温分布规律,对某深部矿井-505~-1 030 m水平的原岩温度测定;利用稳态双平板法对围岩的热物性参数测定,确定测点处围岩散热圈的厚度;现场实测结果表明浅部地温梯度为1.557 5 ℃/hm,深部3202工作面2.114 3 ℃/hm,地温梯度随采深增加成规律性变化;SPSS软件相关性分析结果表明地温梯度与原岩温度、标高相关性较好,回归预测分析表明,随着埋深的增加原岩温度在-1 600 m水平时可达39.455 ℃,地温梯度3.453 3 ℃/hm;届时该矿地温热害问题将愈发凸出。

       

      Abstract: In order to accurately master ground temperature distribution in deep mine, we measured the original rock temperature of -505 to -1 030 levels in a deep mine, and measured the thermal physical parameters of surrounding rock by steady-state double plate method, determined the thickness of surrounding heat dissipation circle at the point. The measured results show that the shallow geothermal gradient is 1.557 5 ℃/hm, the deep 3202 working face is 2.114 3 ℃/hm, geothermal gradient has a regular change with the increase of mining depth; the SPSS analysis shows that there is a high correlation between geothermal gradient, original rock temperature and elevation. Regression prediction analysis shows that original rock temperature can get 39.455 ℃ and geothermal gradient also reach 3.453 3 ℃/hm at -1 600 mlevels, the heat damage in deep mine will be serious.

       

    /

    返回文章
    返回